The Shannon-McMillan theorem for ergodic quantum lattice systems
نویسندگان
چکیده
منابع مشابه
The Shannon-McMillan Theorem for Ergodic Quantum Lattice Systems
We formulate and prove a quantum Shannon-McMillan theorem. The theorem demonstrates the significance of the von Neumann entropy for translation invariant ergodic quantum spin systems on Z-lattices: the entropy gives the logarithm of the essential number of eigenvectors of the system on large boxes. The one-dimensional case covers quantum information sources and is basic for coding theorems.
متن کاملThe Shannon-McMillan theorem and related results for ergodic quantum spin lattice systems and applications in quantum information theory
The aim of this thesis is to formulate and prove quantum extensions of the famous Shannon-McMillan theorem and its stronger version due to Breiman. In ergodic theory the Shannon-McMillan-Breiman theorem is one of the fundamental limit theorems for classical discrete dynamical systems. It can be interpreted as a special case of the individual ergodic theorem. In this work, we consider spin latti...
متن کاملA Bilateral Version of the Shannon-McMillan-Breiman Theorem
We give a new version of the Shannon-McMillan-Breiman theorem in the case of a bijective action. For a finite partition α of a compact set X and a measurable action T on X, we denote by CT n,m,α(x) the element of the partition α ∨ T 1α ∨ . . . ∨ Tmα ∨ T−1α ∨ . . . ∨ T−nα which contains a point x. We prove that for μ-almost all x, lim n+m→∞ ( −1 n+m ) logμ(C n,m,α(x)) = hμ(T, α), where μ is a T ...
متن کاملA Bilateral version of Shannon-Breiman-McMillan Theorem
We give a new version of the Shannon-McMillan-Breiman theorem in the case of a bijective action. For a finite partition α of a compact set X and a measurable action T on X, we denote by C n,m,α(x) the element of the partition α ∨ T 1α ∨ . . . ∨ Tα ∨ T−1α ∨ . . . ∨ Tα which contains a point x. We prove that for μ-almost all x, lim n+m→∞ (
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inventiones mathematicae
سال: 2003
ISSN: 0020-9910,1432-1297
DOI: 10.1007/s00222-003-0318-3